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Deep Survival Analysis Architectures
Recently, many have applied neural networks to data with
censored individuals for survival analysis (Luck et al. 2017;
Katzman et al. 2018; Ranganath et al. 2016; Alaa and
van der Schaar 2017). However, many of these models rely
on assumptions about the distributional form of the time-
to-event data, such as the proportional hazards assumption
(Cox 1972; Wang et al. 2017). These assumptions may not
generalize to new data. Accordingly, we focus our analysis
on deep survival analysis architectures that achieve state-
of-the-art discriminative results without explicitly relying
on any distributional assumptions. Despite reported gains in
discriminative performance, to date, these models have not
been evaluated in terms of calibration.

DeepHit was one of the first fully distribution-free meth-
ods for survival analysis (Lee et al. 2018). DeepHit corre-
sponds to a feed-forward neural network architecture that
takes as input an individual’s covariates xi, and outputs a
probability distribution ŷi ∈ [0, 1]τ , where ŷi,t corresponds
to the estimated P̂ (Z = t|xi). The CIF at time t can then be
estimated as F̂ (t|xi) =

∑t
j=1 ŷi,j . The final layer of Deep-

Hit is a softmax output layer requiring F̂ (τ |xi) = 1. This
formulation assumes that, by the end of the time horizon τ ,
every individual will have had the event. Hence, this for-
mulation will incorrectly estimate the true underlying sur-
vival process for individuals who survive beyond time τ .
Moreover, as DeepHit outputs a fixed-sized vector, it can not
be used to forecast survival curves past the specified time-
horizon τ .

DRSA, or deep recurrent survival analysis, alleviates this
structural issue of DeepHit while taking advantage of the
sequential patterns present in survival analysis (Ren et al.
2019). DRSA uses a long short-term memory (LSTM) net-
work that takes as input at timestep t, a concatenation of an
individual’s covariates xi and t (Hochreiter and Schmidhu-
ber 1997). The output of the LSTM at time t is passed into a
fully connected layer with a sigmoid activation function that
outputs λ̂(t|xi). Accordingly, we can estimate the survival
probability at timestep t as Ŝ(t|xi) =

∏
j:j≤t(1 − λ̂(j|xi)),

and the probability of the event occurring at timestep t as
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P̂ (Z = t|xi) = λ̂(t|xi)
∏
j<t(1 − λ̂(j|xi)). Since DRSA

does not make assumptions about the probability of survival
at the end of the horizon while still allowing for variable-
length forecasting of survival curves, we build on this archi-
tecture in our proposed approach.

Full Proof that LRPS Elicits Calibrated
Survival Curves

Claim. Training deep survival models using LRPS will re-
sult in well-calibrated estimates of survival.

Proof. Consider n individuals with identical or near-
identical covariates with observed event times {zi}ni=1. De-
fine the counting-based Kaplain-Meier estimate for these
individuals at time t as KMn

t = 1
n

∑n
i=1 1t<zi , where

limn→∞KMn
t is the underlying survival probability at time

t for these n individuals.

A survival model will estimate one survival probabil-
ity for these n individuals at time t. Define this value
as p̂t. A well-calibrated survival model will output a p̂t
that closely aligns with the underlying survival probability
limn→∞KMn

t . Consider the optimization problem of find-
ing p̂t which will minimize LRPS . This problem can for-
mally be set-up as argminp̂t

∑n
i=1(p̂t − 1t<zi)2.

First, this optimization problem is strictly convex and has
a unique minimum, as the second derivative is positive ev-
erywhere. such that any minimizer must be the unique mini-
mizer to this loss function. In order to do so, consider taking
the second derivative of the objective function with respect
to p̂t.
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To find the value of p̂t that minimizes this objective function
(p̂∗t ), we set the derivative equal to zero.
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The unique estimated survival probability that minimizes
the objective function is equivalent to the average survival
status for all n individuals at time t. This unique minimum
is equal to KMn

t which, as n gets large, is equal to the true
underlying survival probability for these individuals at time
t. Hence, training a survival model to minimize LRPS will
result in estimated survival probabilities that align well with
the true survival probabilities. �

Censored DDC
In the case of censored individuals, we only know that prior
to censoring the event did not occur. Following the proba-
bility integral transform argument used to justify DDC, for
a well-calibrated model, we would expect half of the indi-
viduals to have the event after reaching an estimated sur-
vival probability of 50%. If more than half the individuals
are censored after reaching an estimated survival probability
of 50%, then we can conclude that the model is not well-
calibrated. However, if less than half of the individuals are
censored after reaching an estimated survival probability of
50%, we cannot conclude anything with respect to model
calibration (the event may take place at any time after cen-
soring). Given these limitations, without strong assumptions
on the event time distribution for censored individuals, one
cannot make meaningful conclusions regarding the calibra-
tion of a model for censored individuals. To this end, while
we measure discriminative performance across both uncen-
sored and censored individuals, we focus our evaluation of
calibration on uncensored individuals.

Trade-Off Between Discriminative
Performance and Calibration

To display the trade-off between discriminative perfor-
mance and calibration, we simulate 1,000 covariates and
corresponding sampled event times through the following
scheme:

X = (Xa,Xb)T ∈ R1,000×20

Xa = (Xa1 ,X
a
2) ∈ R500×20

Xb = (Xb1,X
b
2) ∈ R500×20

Xa1 ,X
b
1 ∼ U(0, 10)10

Xa2 ∼ U(10, 20)10

Xb2 ∼ U(5, 15)10

zi ∼ LN(.5(1T x1:10i )2 + 2(1T x11:20i )2, 0.5)
Note that U and LN denote a uniform and a log-normal

distribution respectively. We consider τ (the time-horizon)
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Ground-truth Survival Curves and Event Times

Figure 1: An example pair of ground-truth survival curves
for 2 individuals from a simulated stochastic process; see the
Appendix for more details. Triangles denote the observed
event times. As the blue individual experienced the event at
a high survival probability, they will consistently be ranked
incorrectly when compared to other individuals who have
a lower survival probability but experience the event later
(e.g., the orange individual). These examples will contribute
negatively to the C-index evaluation, despite good calibra-
tion.

to be the 50th percentile of sampled event times, in order
to right-censor half of the individuals. Finally, we place all
time to events into one of 100 equally spaced time bins.

Given this simulation, we calculate the C-index value for
the ground-truth log-normal survival curves. The average C-
index of the ground-truth survival curves in these finite sam-
ples across 1000 replications of the simulation is .760 (95%
Confidence Interval: (.742, .778)). This is due to examples
such as the one displayed in the Figure 1. Though an indi-
vidual can experience an event early, it is not necessarily true
that their true survival probability is low. These situations re-
sult in incorrect rankings among different individuals, which
contributes negatively towards the C-index value.

Importantly, we note that this is due to the single sam-
ple definition of discrimination. For example, for a particu-
lar observed outcome distribution, it is possible to achieve
perfect discrimination (as measured by the C-index) by esti-
mating heaviside distributions that drop to 0 at the observed
event times. However, these distributions do not take into ac-
count the stochasticity that likely exists in the survival pro-
cess. Due to this stochasticity, it is unlikely for the under-
lying survival curves to provide perfect discriminative per-
formance (i.e. a C-index of 1) with respect to the observed
outcomes, showing an important trade-off that is necessary
to consider when evaluating survival models.

Additional Experimental Set-Up Details
Dataset Details We consider two public clinical datasets:
the Northern Alberta Cancer Dataset and the CLINIC
dataset. For each dataset, we use the same 60/20/20%
train/validation/test split across model initializations in or-
der to train and evaluate our models. We stratify our random
splits in order to ensure a roughly equal proportion of cen-
sored individuals in each split. We normalize all covariates
by the mean and standard deviation of each feature in the



Table 1: Discriminative (C-index) and calibration performance (DDC, D-Calibration, Averaged Brier Score), as well as the
trade-off between the two (total score) for the NACD and CLINIC datasets (mean ± standard deviation across random ini-
tializations, number of times passing the statistical test for D-Calibration). Lower DDC and Brier score values indicate better
performance, while higher values of C-index, D-Calibration, and total score indicate better performance. The proposed training
approach consistently leads to improvements in calibration, without sacrificing discriminative performance or Brier score. An
* indicates results that are statistically significant over all baselines using a paired t-test (p < .05).

Model NACD CLINIC
C-index ↑ DDC ↓ D-Calibration ↑ Brier ↓ Total Score ↑ C-index ↑ DDC ↓ D-Calibration ↑ Brier ↓ Total Score ↑

Ren et al. 2019 .748± .002 .025± .012 1 .101± .002 .846± .004 .616± .003 .138± .002 0 .107± .000 .719± .003
MTLR .750± .000 .062± .000 0 .101± .000 .834± .000 .608± .000 .168± .000 0 .106± .000 .702± .000

DeepHit (Llog) .751± .002 .083± .005 0 .102± .000 .826± .003 .616± .003 .133± .004 0 .103± .000 .720± .002
DeepHit (Llog + λLkernel) .748± .004 .020± .005 0 .107± .001 .849± .003 .624± .001 .063± .007 0 .106± .001 .749± .002

Proposed - LRPS .741± .008 .305± .089 0 .207± .034 .715± .050 .628± .003 .241± .022 0 .153± .002 .687± .011
Proposed - Lkernel .742± .003 .012± .002 3 .101± .003 .847± .001 .615± .005 .097± .006 0 .110± .001 .731± .005
Proposed Method .742± .006 .007± .003∗ 5 .104± .002 .850± .003 .627± .001 .056± .011 0 .106± .001 .753± .004

training set.
Additional Baselines. For completeness, we report the

results for two additional baseline methods. Namely, we
train two variants of the feed-forward DeepHit model. First,
we train the DeepHit architecture with the loss as it was orig-
inally proposed (Llog + λLkernel). To examine the impor-
tance of Lkernel in DeepHit and examine the performance
of Llog alone, we also consider evaluating the performance
of DeepHit without the kernel loss (λ = 0).

Additional Training and Hyperparamter Details. All
DRSA models had the same architecture: a one-layer LSTM
with hidden size 100 and a single feed-forward layer with
a sigmoid activation on the output for each time-step. For
DeepHit, we followed the same architecture proposed in the
original paper. We considered learning rates of 1e-3 and 1e-
4, but preliminary results found no comparable difference
in performance on the held-out validation set, so we con-
tinued using a learning rate of 1e-3. In order to tune the σ
hyperparameter for the Lkernel loss function, we consid-
ered σ values from 0.1 to 10. σ was then chosen based on
performance on the held-out validation set on the NACD
dataset. This optimal σ value (σ = .8) was used for both the
NACD dataset and the CLINIC dataset in order to test gen-
eralizability of the relationship between LRPS and Lkernel
in the composite loss. Other hyperparameters, such as the
weighting scheme used in conjunction with LRPS due to the
right-skewed time-to-event distribution, were chosen based
on performance on the held-out validation set as well.

In order to tune regularization constants of MTLR, which
control the amount of smoothing for the model, we used the
cross-validation scheme built into the MTLR R package.

Additional Results
The proposed method continues to consistently outperforms
all baselines with respect to DDC and D-calibration, while
maintaining comparable C-index and average Brier score
values (Table 1). Compared to DRSA and DeepHit with
λ = 0, the proposed method results in a statistically signif-
icant improvement in calibration across both tasks (NACD
DDC: .025 and .083 vs. .007, CLINIC DDC: .138 and .133
vs .056). This improvement, however, is accompanied by a
small decrease in C-index in the NACD dataset. Moreover,
training using LRPS alone results in better calibration than

both DRSA and DeepHit trained using only Llog (NACD
DDC: .025 and .083 vs .012, CLINIC DDC: .138 and .133
vs .097), with minimal drops in discriminative performance.
These empirical results support the original hypothesis that
training using LRPS should result in survival models that
better balance discriminative performance and calibration.

DeepHit that includes training with Lkernel consistently
results in better calibration compared to DeepHit without
this loss function (DeepHit (λ = 0)). This supports the hy-
pothesis that Lkernel can act as a scaling mechanism to cal-
ibrate survival estimates without sacrificing discriminative
performance. Despite this increased performance, our pro-
posed approach still achieves better calibration performance
(NACD DDC: .020 vs .007, CLINIC DDC: .063 vs .057),
while also maintaining a better trade-off between calibration
and discriminative performance, as shown through the total
score.

Overall, these results continue to support our original hy-
pothesis regarding the efficacy of the training scheme. We
show that training using LRPS outperforms models that
solely train using Llog , while including the kernel loss func-
tion can consistently improve calibration performance with
respect to DDC and D-Calibration. Finally, the best perfor-
mance consistently comes from our proposed method, the
combination of LRPS and Lkernel.
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